化解机器人的「幻觉」:北大发布OmniManip,VLM结合双闭环系统,3D理解能力大幅提升
- 2025-01-22 13:20:00
- 刘大牛 转自文章
- 315
AIxiv专栏是人工智能站发布学术、技术内容的栏目。过去数年,人工智能站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com
本文的作者均来自北京大学与智元机器人联合实验室,通讯作者为北京大学计算机学院助理教授董豪。目前团队研究方向覆盖智能机器人的泛化操纵、具身导航和感知自主决策。团队持续开放联合实习生岗位,提供充足的机器人本体和计算资源。
近年来视觉语⾔基础模型(Vision Language Models, VLMs)在多模态理解和⾼层次常识推理上⼤放异彩,如何将其应⽤于机器⼈以实现通⽤操作是具身智能领域的⼀个核⼼问题。这⼀⽬标的实现受两⼤关键挑战制约:
1. VLM 缺少精确的 3D 理解能⼒:通过对⽐学习范式训练、仅以 2D 图像 / ⽂本作为输⼊的 VLM 的天然局限;
2. ⽆法输出低层次动作:将 VLM 在机器⼈数据上进⾏微调以得到视觉 - 语⾔ - 动作(VLA)模型是⼀种有前景的解决⽅案,但⽬前仍受到数据收集成本和泛化能⼒的限制。
针对上述难题,北⼤携⼿智元机器⼈团队提出了 OmniManip 架构,基于以对象为中⼼的 3D 交互基元,将 VLM 的高层次推理能力转化为机器⼈的低层次高精度动作。
针对⼤模型幻觉问题和真实环境操作的不确定性,OmniManip 创新性地引⼊了 VLM 规划和机器⼈执⾏的双闭环系统设计,实现了操作性能的显著突破。
实验结果表明,OmniManip 作为⼀种免训练的开放词汇操作⽅法,在各种机器⼈操作任务中具备强⼤的零样本泛化能⼒。
项⽬主⻚与论⽂已上线,代码与测试平台即将开源。

主⻚地址:https://omnimanip.github.io 论⽂地址:https://arxiv.org/abs/2501.03841
基于 VLM 的任务解析:利⽤ VLM 强⼤的常识推理能⼒,将任务分解为多个结构化阶段(Stages),每个阶段明确指定了主动物体(Active)、被动物体(Passive)和动作类型(Action)。 以物体为中⼼的交互基元作为空间约束:通过 3D 基座模型⽣成任务相关物体的 3D 模型和规范化空间(canonical space),使 VLM 能够直接在该空间中采样 3D 交互基元,作为 Action 的空间约束,从⽽优化求解出 Active 物体在 Passive 物体规范坐标系下的⽬标交互姿态。 闭环 VLM 规划:将⽬标交互姿态下的 Active/Passive 物体渲染成图像,由 VLM 评估与重采样,实现 VLM 对⾃身规划结果的闭环调整。 闭环机器⼈执⾏:通过物体 6D 姿态跟踪器实时更新 Active/Passive 物体的位姿,转换为机械臂末端执⾏器的操作轨迹,实现闭环执⾏。










联系人: | 透明七彩巨人 |
---|---|
Email: | weok168@gmail.com |