港中文开源视频动作分析库MMAction,目标检测库算法大更新
- 2019-06-20 14:39:00
- 刘大牛 转自文章
- 230
昨日,香港中文大学多媒体实验室(MMLab)OpenMMLab 发布动作识别和检测库 MMAction,同时也对去年发布的 目标检测 工具箱 mmdetection 进行了升级,提供了一大批新的算法实现。
OpenMMLab 计划是香港中文大学多媒体实验室(MMLab)2018 年启动的计划,由香港中文大学教授、 商汤科技 联合创始人 林达华 老师负责,初衷是「为 计算机视觉 的一些重要方向建立统一而开放的代码库,并不断把新的算法沉淀其中。」
2018 年 10 月,在 OpenMMLab 的首期计划中,商汤和港中文正式开源了 mmdetection,这是一个基于 PyTorch 的开源 目标检测 工具包。该工具包支持 Mask RCNN 等多种流行的检测框架,读者可在 PyTorch 环境下测试不同的预训练模型及训练新的检测分割模型。
昨日, 林达华 发表知乎文章,发布 OpenMMLab 第二期内容:
MMDetection(目标检测 库)升级到 1.0,提供了一大批新的算法实现。
MMAction(动作识别和检测库)全新发布。
MMDetection 1.0
Github 地址: open-mmlab/mmdetectiongithub.com
最新的 MMDetection 是 MMLab 联合 商汤科技 以及十多个研究团队合作完成的。据介绍,相较于其他开源 数据库 ,MMDetection 1.0 的优势如下:
高度模块化的设计。通过不同检测算法流程的分解,形成一系列可定制的模块。然后对这些模块进行随机组合,可以迅速搭建不同的检测框架。
多种算法框架支持。MMDetection 直接支持多种主流的目标检测 与实例分割的算法框架,包括 single-stage、two-stage、multi-stage 等多种典型架构,以及各种新型模块。此外,MMDetection 还提供了 200 多个预训练的模型。
高计算性能。MMDetection 所支持的主要模块均能在 GPU 上运行。整体的训练速度优于 Detectron、maskrcnn-benchmark、以及 SimpleDet。特别值得一提的是,MMDetection 还直接支持混合精度训练以及多卡联合训练,这些技术的引入都能显著提高训练的效率。
先进算法。MMDetection 提供了在 MSCOCO 2018 比赛中夺冠的 HTC 算法。随着越来越多研究团队加入到 mmdetection 的开发中,MMLab 研究团队将持续保持和最新算法的同步。
此外,MMLab 也发布了一份技术报告,对 MMDetection 进行了详细介绍。
从机构名称中,我们可以发现 MMDetection 的发布联合了国内外 13 所机构。
报告链接: https://arxiv.org/abs/1901.11356
该报告还提供了 MMDetection 与其他开源库的对比,可以看到 MMDetection 提供的算法远比其他开源库丰富:
MMDetection 与其他开源库的对比
MMLab 的研究团队还在 MMDetection 的基础上对相关算法进行了全方位的对比试验。他们比较了 损失函数 、归一化策略、训练尺度等一系列设计参数的选择对于检测性能的影响。
视频动作分析库 MMAction
林达华 介绍道,「在 深度学习 刚刚开始进入 计算机视觉 领域的时候,MMLab 已经开始了对使用 深度学习 进行视频动作分析的研究,提出了一系列有影响的算法框架。比如,我们在 ECCV 2016 提出的时序分段网络(Temporal Segmental Network)已经被广泛运用于实际系统中,并影响了很多新的算法设计。」
基于过去几年的探索,MMLab 建立了专门用于视频动作分析的统一代码库 MMAction。
项目地址: https://github.com/open-mmlab/mmaction
据介绍,MMAction 有以下重要优点:
全面支持视频动作分析的各种任务,包括动作识别(action recognition)、时域动作检测(temporal action detection)以及时空动作检测(spatial-temporal action detection)。
支持多种流行的数据集,包括 Kinetics、THUMOS、UCF101、ActivityNet、Something-Something、以及 AVA 等。
已实现多种动作分析算法框架,包括 TSN、I3D、SSN、以及新的 spatial-temporal action detection 方法。MMAction 还通过 Model Zoo 提供了多个预训练模型,以及它们在不同数据集上的性能指标。
采用高度模块化设计。用户可以根据需要对不同模块,比如 backbone 网络、采样方案等等进行灵活重组,以满足不同的应用需要。
林达华 知乎文章: https://zhuanlan.zhihu.com/p/69830582
联系人: | 透明七彩巨人 |
---|---|
Email: | weok168@gmail.com |