谷歌AI识别26种皮肤疾病准确率90% ,实力比肩资深专家

2019-09-17 11:09:00
刘大牛
转自文章
229
皮肤类疾病是全球最常见的疾病之一,仅次于感冒、疲劳和头痛。据估计,全球有25%的患者接受的治疗都是针对皮肤问题的,在这部分患者中,多达37%的人至少有过一次以上因皮肤问题而就医的情况。皮肤科 庞大的工作量以及全球皮肤科医生的 短缺迫使一些患者只能在全科医生处进行相关皮肤类疾病就诊,而全科医生在诊断病情方面又不如专家准确。
 
这一趋势促使谷歌的研究人员研发了一种 能够发现初级护理中最常见的皮肤病的人工智能系统。人工智能系统的开发基于 深度学习 (deep learning)来解决初级保健中最常见的皮肤问题,这项研究旨在 增强全科医生诊断皮肤类疾病的能力。当提供有关患者病例的图像和元数据时,AI可以在 26种不同的皮肤疾病下实现准确发现,其准确度能比肩资深的皮肤科专家。

通常来说,皮肤科医生在诊断任何皮肤疾病时,不会只给出单一诊断,他们会根据病人实际状况以及疾病原理列出一个可能疾病的范围,进而再通过后续的问诊、测试、成像等方式缩小疾病范围。这款最新的AI系统也是如此, 它处理的输入数据包括一个或多个皮肤异常的临床图像和多达45种元数据类型(例如,病史、年龄、性别、现有症状等)。
 
研究小组表示,人工智能系统使用来自两个州17个初级保健诊所的17,777例确诊病例对该模型进行评估。他们将训练AI的 语料库 一分为二,将2010-2017年期间病例用作训练AI的数据集,将2017-2018年病例用作评估AI是否准确地参照数据集。同时在训练期间,该模型利用40多名皮肤科医生提供的 50,000多例诊断实例不断自我“精进技艺”。

图片来源:Pixabay 接着,为了确保AI的诊断准确性,研究人员汇集三名顶尖的皮肤科医生的诊断结果来加以验证。通过对3750多例病例的汇总得出真实标签,AI对皮肤疾病的排名列表中top 1以及top 3的常见疾病的诊断准确度分别达71%和93%。此外,当系统与三类临床医生(皮肤科医生、全科医生和实习医师)在诊断疾病的 准确率 进行比较时,其以 90%的准确度胜于皮肤科医生75%、全科医生60%、实习医师55%的诊断 准确率

图片来源:Google 最后,为了评估对不同皮肤类型的潜在偏差,该团队根据Fitzpatrick皮肤分型(译者注:肤色根据对日光照射后的灼伤或晒黑的反应可分为 I-VI 型。I 型:总是灼伤 , 从不晒黑;II 型:总是灼伤 , 有时晒黑;III 型:有时灼伤 , 有时晒黑;IV 型:很少灼伤 , 经常晒黑;V 型:从不灼伤 , 经常晒黑;VI 型:从不灼伤 , 总是晒黑。欧美人皮肤基底层黑色素较少,属I, II 型;黄皮肤人种为III, IV型,皮肤基底层黑色素含量中等;非洲棕黑色皮肤为V, VI型,皮肤基底层黑色素含量很高) 测试了AI系统的性能

研究人员将注意力集中在至少占5%数据的皮肤类型上,他们发现该模型的性能表现与验证AI准确性该步骤相似。当肤色、人种有区别时,AI对top 1常见皮肤疾病的诊断率为69%-72%,对top 3 常见疾病的诊断率为91%-94%。 换言之,该AI不会因为肤色的差别而进行误判。

图片来源:Pixabay目前,该AI系统还是存在一定 局限性。首先,现在的元数据都源于一个数据出处,数据范围还不够广泛;其次,Fitzpatrick皮肤类型中一些皮肤疾病太过罕见,用于常见疾病的AI系统并不适用;再者,一些类似于黑色素瘤的数据样本该AI还未学会如何进行分析,所以该人工智能还有更多上升完善的空间。

相信在不久的将来,这些限制可以通过AI不断加强学习更多类型的皮肤病类型和数据的方式解决。 深度学习 为皮肤病的鉴别诊断提供信息,这一实验的成功无疑会减轻医生许多负担,未 来也 可更多用于帮助分类病例、指导临床护理的优先顺序、或帮助全科医生更准确地启动皮肤病治疗程序,从而改善皮肤病患者的治疗与护理。


参考资料:
[1] Google says its AI detects 26skin conditions as accurately as dermatologists Retrieved Sep 16, 2019 from https://venturebeat.com/2019/09/13/googles-ai-detects-26-skin-conditions-as-accurately-as-dermatologists/
[2] A deep learning system for differential diagnosisof skin diseases Retrieved Sep 16, 2019 from https://arxiv.org/abs/1909.05382
药明康德AI
药明康德AI

药明康德微信团队专业打造。当人工智能遇上大健康,带你看全AI时代的智慧之光。

专栏二维码
产业 谷歌 皮肤病 深度学习
发表评论
评论通过审核后显示。
文章分类
联系我们
联系人: 透明七彩巨人
Email: weok168@gmail.com